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To take full advantage of the vast amount of highly detailed data acquired by single particle mass spectrom-
eters requires that the data be organized according to some rules that have the potential to be insightful.
Most commonly cluster analysis methods are used to classify the individual particle mass spectra on the
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1. Introduction

Single particle mass spectrometers are sophisticated instru-
ments designed to measure the sizes and compositions of
individual aerosol particles in-situ and in real-time. These instru-
ments characterize hundreds of thousands or millions of particles,
generating vast amounts of rich and complex data. To make effi-
cient use of these data calls for the development of software that is
designed to transform the process of mining hundreds of gigabytes
of data into a tractable task.

Several data clustering approaches have been applied to the
analysis of data produced by single particle mass spectrometers
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r analysis is a powerful strategy for the exploration of high-dimensional
ypotheses or data classification models. However, more often than not, the
ing results reveals that many clusters contain particles of different types
type end up in a number of separate clusters. Our experience with cluster
vast amount of non-compiled knowledge and intuition that if brought to
tial to greatly improve it. ClusterSculptor is software package designed to
tuitive visual framework to aid scientists introduce their vast knowledge
ess. ClusterSculptor offers a wide variety of tools that are necessary for a
n activity we call cluster sculpting. ClusterSculptor is designed to be cou-
mining and visualization software package. The data are first visualized
ed problems are exported to ClusterSculptor, where the user steers the

tion of clusters of tens of thousands of particle mass spectra in real-time.
can be then imported back into SpectraMiner.
f a study, in which ClusterSculptor is used to classify a complex dataset that
ectra of a variety of particle types. The compositions of these laboratory

lly chosen to test some of the more difficult aspects of single particle mass
the use of ClusterSculptor to greatly improve chemical speciation of single

input into data classification process.

© 2008 Elsevier B.V. All rights reserved.

[1–10]. These methods typically treat the individual particle mass
spectra as multidimensional vectors and calculate their proximity
in N-D space. The distances between these spectra can be expressed
by a number of metrics such as: Euclidean distances, dot products,
correlation coefficients, Mahanalobis distances, etc. On the basis of
these distances a variety of clustering procedures like: hierarchical
cluster analysis [4,8,9], artificial neural networks [3,7], principal
components analysis [6], k-means clustering [5,9], and fuzzy c-
means clustering [8] are then used to organize particle mass spectra
into classes.

The hierarchical methods initially yield a large number of clus-
ters, which are then combined until stopping conditions are met,
resulting in a limited or, “manageable” number of clusters. It is
important to note that in this approach there is a simple option
for a scientist to determine the final clustering outcome and with
it select the classification’s final level of detail. These decisions are

http://www.sciencedirect.com/science/journal/13873806
mailto:alla.zelenyuk@pnl.gov
dx.doi.org/10.1016/j.ijms.2008.04.033


nal of
2 A. Zelenyuk et al. / International Jour

made by visually examining the clusters’ content and on the basis of
“expert” knowledge. Other clustering approaches classify particles
into classes on the basis of a set distance metric [1,3,7]. In all cases,
at the end of the classification process each class is represented by
an average/representative mass spectrum. It is important to keep
in mind that once the data are organized and reduced into classes,
there is no convenient path to a higher level of details.

Trimborn et al. [2,8] developed and applied a fuzzy classification
algorithm in an attempt to account for the complex internal mix-
tures of individual atmospheric aerosol particles. In this approach
internally mixed particles belong to more than one class, with
varying degree of membership that is intended to represent their
compositions.

In the past few years we have developed and applied a unique
data mining and visualization software package we call Spec-
traMiner that makes it possible to handle hundreds of clusters,
limiting loss of information and thus overcoming the boundaries
set by traditional data cluster analysis approaches [9]. SpectraMiner
organizes the data in a circular interactive hierarchical tree, or
dendrogram, and provides the user with a visually driven, intu-
itive interface to easily access the data at all levels, and to mine
the data in real-time. The user can view the mass spectral data at
any point on the hierarchical tree, from mass spectra of individual
particles to the average mass spectrum of the entire dataset, and
any intermediate point. SpectraMiner makes it possible to account
for the complex internal mixtures of atmospheric aerosol particles
[11] without resorting to particle partial membership in several
different classes as used in a fuzzy classification algorithm. With
SpectraMiner the user can easily identify classes that contain very
few particles, can create animations that illustrate the temporal
evolution of the data, or the behavior of the particle data as a func-
tion of any other variable of interest. These are but a few of the
features of this software that was specifically developed to handle
data generated by single particle mass spectrometers.

While the methods, metrics and threshold distances that are
used as criteria for particles to belong to the same class can be differ-
ent for the different data classification methods, the vast majority of
these approaches rely on unsupervised cluster analysis. The exam-
ination of the data clustering results reveals that more often than
not, users are not completely satisfied with the results of this type of
data classification. The two most common problems with unsuper-
vised data classification are that they often fail to properly separate
different particle types and that identical particle types are spread
over a number of clusters. The first problem makes it almost impos-

sible to properly follow particle behavior and the second results in
unnecessary complexity that hinders data analysis.

Past experience with different clustering approaches
[1,3,4,9,10,12] reveals that classification of single particle mass
spectra could be greatly improved if the users aid the cluster-
ing process by utilizing their scientific knowledge to steer the
classification.

It is clear that the vast amount of expert knowledge that scientist
accumulated by working with his/her instrument in the field and
in the laboratory should be harnessed to help guide the data classi-
fication. This approach would allow the clustering process to take
into account the peculiarities of the instruments used to acquire
the data and their impact on the data they generate. It may even
include information about the properties of the specific particles
that are the subject of the study.

A few different approaches were used to refine data classifica-
tion by inserting scientific expert knowledge. The most common is
for the user to manually combine clusters on the basis of a visual
inspection of their average mass spectra [4,12]. Other approaches
rely on using different clustering algorithms [10] or classification
parameters [9,10]. Some have defined discriminant chemical mark-
Mass Spectrometry 275 (2008) 1–10

ers or characteristic peaks [1,9] that are used in particle assignment.
In other cases data are even modified prior to classification [4,9,10].

While each of these approaches demonstrated some improve-
ments, their actual efficacy is difficult to establish because they
were mostly applied to ambient data for which the correct final
result is unknown. To date there are very few papers that describe
the results of classification of individual particle mass spectra of
particles whose compositions are known. Phares et al. [13] pro-
vided results of an application of the ART-2a algorithm to data
classification of seven particle types. The final outcome of this exer-
cise revealed that many particle types were poorly classified. The
authors point to impurities, contaminations, and shortfalls of laser
ablation to explain their findings. Murphy et al. [4] conducted a
study in order to test their hierarchical clustering algorithm and
to compare it with ART-2a. This study reports the results of clas-
sifying nine types of laboratory generated particles, a dataset of
particle mass spectra that were acquired in the ambient atmo-
sphere and the very same dataset of seven laboratory generated
particles that was used by Phares et al. [13]. In the Murphy et al.
[4] study “expert” knowledge about particle chemistry, the atmo-
sphere, and the instrument response was used in a number of steps
to achieve “satisfactory” results of data classification. In this case
“expert” input was used to: guide the determination of stopping
conditions, choose the type of data scaling to be used, and decide
which clusters should be “manually” combined. An examination of
the final classification results revealed a number of problems with
particles that were composed of: ammonium sulfate, ammonium
nitrate, organics and their mixtures. Again, the authors attribute
the difficulty to achieve proper classification to the shortcomings
of ablation and the presence of trace contaminants. Moffet and
Prather [12] described results of a study of two particle types—one
composed of polystyrene latex (PSL) and the other of dioctyl seba-
cate (DOS), whose mass spectra were classified, using the ART-2a
algorithm, into 35 clusters. These clusters were then hand sorted
on the basis of the intensity of the Na+ mass spectral peak inten-
sity, with DOS particles exhibiting higher Na+ intensity. The authors
justify this process by claiming that, in their system, DOS contains
higher impurity of sodium than PSL. Rebotier and Prather [10] used
a mixture of presorted ambient particles to test the accuracy and
speed of a number of data clustering approaches. This study shows
that it is possible to improve data classification by altering the mass
spectra prior to the classification process. In this case the authors
used the square root of peak intensities [10] to reduce the impact
of some of the dominant peaks. In a publication that presented

the use of SpectraMiner to classify the data of 12 types of lab-
oratory generated particles [9], the compositions of which were
chosen to test some of the more difficult aspects of single particle
mass spectroscopy, we discussed the limitations inherent to unsu-
pervised data clustering approaches. We demonstrated that more
stringent criteria for particles to belong to the same cluster can in
some cases improve the separation of different particle types, but
we also found that an unavoidable outcome of this approach is an
increase in the number of clusters and overall complexity. We also
showed that SpectraMiner can be used to identify and diagnose
specific causes for the failure to properly classify particle types and
illustrated how the mass spectral data can be manually sculpted
prior to classification to achieve improved data clustering.

It is important to note that all past cases, in which “expert” input
was used to influence the classification, were implemented in the
absence of any intuitive tools that have the potential to turn this
type of activity into an iterative process, in which the scientist can
steer the data classification process with ease, and offer the user
the framework to test and verify a proper outcome.

In some respects, as we advanced our understanding of the data
we acquired and the analysis tools we deployed, we begun to view
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data classification and exploration with SpectraMiner as an impor-
tant first step in data analysis. SpectraMiner presents the results of
data classification in easy to explore formats that allow the user to
identify points that need to be, or could be improved by including
expert knowledge in the clustering process.

It is important to note that there are two elements that have the
capacity to limit how much detail can be extracted from the data
generated by single particle mass spectrometers: the first being
determined by the quality of the signal that is generated by the
instrument and the second relates to the data analysis process. Our
goal here is to demonstrate how our recently developed software,
we call ClusterSculptor [14], makes it possible to push data analysis
to the point where it offers the option to reach the limits that are
set by the quality of the data. ClusterSculptor is interactive software

that is designed to work either in conjunction with SpectraMiner
by importing any subset of the data from it, or be used as a stand-
alone real-time visual data classification program. ClusterSculptor
is designed to provide the researcher with the tools to input their
expert knowledge by sculpting the data in a manner that steers the
clustering process.

The software is built around an intuitive visually driven inter-
face, through which the user can mold the data with a variety of
tools, visually inspect the transformation using a number of repre-
sentations, modify the process and re-cluster the data. An essential
aspect of this software is that the process of data shaping, clus-
tering and result visualization are all carried out with ease, and in
real-time, which assures that the user is able to attempt a number
of approaches until a satisfactory result is achieved.

In the sections below we will demonstrate how some of the
numerous features of ClusterSculptor can be used to refine classi-
fication of single particle mass spectra and will test the software
by applying it to several of the particle types that are of interest
to atmospheric science and which were presented in the previous
publication as a laboratory test case of SpectraMiner [9].

Fig. 1. Screen capture of ClusterSculptor displaying 7076 individu
Mass Spectrometry 275 (2008) 1–10 3

2. Methods

2.1. Particles, instrumentation, and mass spectra generation

All particle types, except soot, were generated by aerosolizing
them from solutions using an atomizer (TSI Inc., Model 3076) as
described in detail elsewhere [9,15]. Soot particles were sampled
from a diesel engine (Mercedes 1.7L A-Class) at the National Trans-
portation Research Center (Oak Ridge, TN) [9,16].

Individual particle mass spectra and their vacuum aerodynamic
diameters were acquired by our single particle mass spectrome-
ter, SPLAT. The instrument has previously been described in details
elsewhere [9,16]. The data presented here were originally pro-
described in detail by Zelenyuk et al. [9]. Here we focus only on
the use of ClusterSculptor to extend this process. It is important to
keep in mind that SpectraMiner is not an essential part of the pro-
cess and that the data can be directly and completely analyzed by
ClusterSculptor.

2.2. ClusterSculptor basics

Fig. 1 is a screen capture of ClusterSculptor displaying 7076 indi-
vidual particle mass spectra of particles containing ammonium
sulfate and organics. Below we provide a brief description of the
elements that make-up ClusterSculptor, their functionalities and
applicability to the classification of single particle mass spectra.

At the center, the program displays all of the individual particle
mass spectra in a color map that is constructed from horizontal lines
of colored pixels. Each of the horizontal lines represents a normal-
ized, individual particle mass spectrum in which peak intensities
are indicated by colored pixels using the rainbow color scheme,
with red being high intensity and blue being low. Here we use a
log(log(I)) scale, where I is peak intensity, to enhance the presence

al particle mass spectra. See text for a detailed description.
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of very low intensity peaks, making it easy to observe variations
between spectra. The user can select the m/z range to be displayed.
The mass spectra are grouped into the clusters they belong to at the
current stage of the data organization. The clusters are separated
by white lines. By default the mass spectra within each cluster are
organized according to their distance to the center of the cluster,
but users can also sort the data by mass spectral intensity of any m/z
value, by particle size or acquisition time (timestamp). In the lower
panel, the program displays the average mass spectrum, reflect-
ing unaltered relative intensities. At the top, the program displays
the average sculpted mass spectrum in which the relative intensi-
ties reflect the scientists’ input. A comparison between the average
mass spectra in the top bottom panels reveals the differences.

The color map of the individual particle mass spectra remains
unchanged when the mass spectral intensities of existing peaks are
modified. However, when “new” peaks are created, they appear in
the color map as well as in other clusters’ views. What we mean
here by “new” peaks and how they are created will become clear
as we go through the examples later in the paper.

The cluster information window displays: (1) the cluster name,
(2) the number of particles in the active cluster, (3) information
relating to the size of the particles in the cluster, and (4) the mass
spectral peak intensities and timestamps of the individual particle
mass spectra. Double clicking on any of the clusters makes it active,
at which point the displayed information, including the average
mass spectra, number of particles and neighborhood map, refer to
that cluster only. The active cluster can be further clustered.

In addition to the ability to sculpt the data, the users may click
on any particle to set it as the initial cluster center for k-means
clustering, making it possible to identify a particle type of interest
and have the program search for other particles that are similar to
it.

The green panel on the left displays the particle sizes. User can
control the displayed size range and time-of-flight to aerodynamic
size calibration parameters. The individual particle mass spectra
can also be sorted by particle size, as is the case here. Particle size
can be used to classify the data as well.

The dendrogram, shown on the right, represents the cluster hier-
archy. Clicking on a dendrogram leaf turns that cluster into the
active one and displays the information about the particles it con-
tains. The user can name any or all of the leaves and select their
colors. Most importantly, based on visual examination of the classi-
fication results, the user can subdivide or merge any of the clusters
on any level of the hierarchical tree until satisfactory results are

achieved.

The neighbor map on the left is designed to show the relations
between a mass spectrum or a cluster and the rest of the dataset.
When the mouse points to any particle mass spectrum on the color
map, the neighbor cluster that is closest to that mass spectrum
is indicated by a blue frame that appears in the dendrogram. In
addition, the distances from each of the individual particle mass
spectra to the center of the cluster that is being indicated are shown
by the lengths of the bars in the neighbor map. The selected active
mass spectrum is rendered in red, while the green bars indicate
mass spectra that have the same closest neighbor. Distances of other
mass spectra to the center of the emphasized cluster are rendered
in blue. This information is helpful to identify similar clusters and
to assist with the cluster merging process as described in detail by
Nam et al. [14].

In the lower window on the left, the program provides the users
with various display options, which we will illustrate in the next
section.

In the windows on the right, the program displays the different
control parameters. The upper frame is used to allow the user to
sculpt the data by applying different weights to any of the mass
Mass Spectrometry 275 (2008) 1–10

spectral peaks, or to a range of m/zs, thereby increasing or decreas-
ing peak intensities or a range of m/zs. The bottom right window
is used to sculpt the data by creating “new” peaks on the basis
of existing ones. Most commonly we use this window to create a
“new” peak by first summing the intensities of a number of related
peaks and then placing the value of the calculated sum at an m/z
that typically has zero intensity. This option provides the means
to minimize the, always-present, noise in the mass spectral rel-
ative peak intensities that is due to variations in fragmentation
patterns.

The classification control window is used to set the clustering
criteria, such as distance metrics, minimum number of particles per
cluster, minimum (threshold) distances, the number of clusters to
be formed (for K-mean clustering) and number of iterations.

The program also provides the user with the option to classify
the data on the basis of particle size or on the basis of visually
identifiable mass spectral features, where the later is achieved by
inserting demarcation lines on the color map to serve as break
points between clusters.

ClusterSculptor also performs a Principle Component Analysis
(PCA) of the data and offers the user the option to view a projec-
tion of the dataset onto a 3D Eigen map, where the 3 dimensions
are the largest Eigen values of the principal components. Since the
principal components represent the axes with the most variant N-D
space, the presence of independent clusters might be more percep-
tible in the Eigen Space. The utility of these views for data sculpting
and clustering is described in detail by Nam et al. [14]. At any point
the user can easily switch between the 3D Eigen map and the color
map views.

Once data sculpting, classification, and merging are complete,
the data can be exported back into SpectraMiner, where the new
clusters are placed at the same position of the circular dendrogram
they were originally extracted from. From this point on, all the data
visualization and mining tools offered by SpectraMiner apply to the
re-clustered data, which are merged into the overall dataset.

Below we demonstrate the application of ClusterSculptor to a
number of particle types that are of interest to atmospheric sci-
ence and which were presented in the previous publication as a
laboratory test case of SpectraMiner [9].

3. Results and discussion

3.1. The case of particles containing alkali metals
In laser ablation single particle mass spectrometry it is common
to find that the mass spectra of particles containing substances that
produce positive ions with high efficiency, like alkali metals, are
dominated by those ions [17–20]. Since the intensities of the other
peaks, which are often used to properly distinguish different parti-
cle types and their sources, are significantly lower, it is very difficult
to properly classify these data when using unsupervised data clus-
tering. For example, urban dust and biomass burning particles are
two common, but very different atmospheric particle types that
exhibit high K+ mass spectral peak intensity.

Another example is sodium-containing particles, like freshly
emitted sea-salt particles containing NaCl and processed sea-salt
particles containing NaNO3. To better understand atmospheric pro-
cesses, it is clearly important to be able to distinguish between these
two particle types.

In our previous publication [9] we showed that the high inten-
sity of the sodium peak in the mass spectra of NaCl and NaNO3
particles made it impossible to properly separate the two parti-
cle types when a standard, unsupervised clustering approach was
used. We showed that it is possible to improve the classification
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to some degree by decreasing the distance threshold parameter,
but it results in the creation of a large number of clusters. We also
illustrated that great improvement could be achieved simply by
reducing the intensity of the sodium peak prior to data clustering.
Here we demonstrate the application of ClusterSculptor to the very
same dataset.

In Fig. 2a we present the color map of 3000 NaCl particles and
3000 NaNO3 particles. The data clearly indicate that all the parti-
cles contain Na, but in this format the color map provides no clear
indication of the fact that two distinct particle types are present.
To explore the data content, we reorder particles on the color map
according to the intensity of a mass spectral peak that carries signif-
icant intensity, but is not the m/z = 23 peak. For example, the results
of reordering the data on the basis of the intensity at m/z = 62 is
shown in Fig. 2b. An inspection of the color map in this, reordered
form clearly reveals the presence of two particle types.

In order to improve the clustering process, the next step involves
increasing the weight of all the mass spectral peaks with m/z > 23
from a default value of 1–10, i.e., increasing their intensity by a
factor of 10. The sculpted data are classified in this case into five
clusters using K-mean clustering and the results of this classifica-
tion are presented in Fig. 2c.

A comparison between the mass spectra of particles in these
five clusters suggests that the 3rd (green) and 5th (blue) clusters
contain NaNO3 particles and the other three contain NaCl particles.
Also shown in Fig. 2c in the green panel on the left are the particle
size distributions. An inspection of the particle size distributions,
on the left, provides support for these assignments. Particles in
clusters three and five exhibit three distinct and relatively nar-
row sizes—these are consistent with particles that were selected
classified with Differential Mobility Analyzer (DMA).

To complete the data organization, the clusters are combined
to produce the two clusters shown in Fig. 2d, where the data are
sorted by particle size, as is evident from the pattern on the particle
size panel. The classified data can also be viewed in the 3D Eigen
map view (not shown). The 3D Eigen map and principal component
window can also be used to guide data sculpting and clustering as
described by Nam et al. [14].

The two new clusters shown in Fig. 2d are now ready to
be exported back to SpectraMiner to replace the original Na-
containing clusters. It is important to note that the entire process of
exporting the data from SpectraMiner, data visualization, sculpting,
clustering, merging, and exporting the new clusters back to Spec-
traMiner is carried out in real-time and requires only a few minutes

to complete.

3.2. Distinguishing between soot and organics

Understanding the role that organics play in determining the
properties of atmospheric particles is at present one of the most
important challenges of atmospheric aerosol research. Progress
in this area clearly depends on our ability to identify and quan-
tify the various organic compounds that are commonly present
in aerosols. At the very least, it is important to be able to confi-
dently distinguish between elemental carbon and organic carbon.
Unfortunately, laser ablation can result in extensive fragmentation
of organics compounds, often to the point that their mass spectral
intensities are dominated by carbon progressions similar to those
of soot. As a result, unsupervised classification has difficulty sep-
arating soot particles from particles that are composed of organic
carbon and consequently a significant fraction of the particles that
are composed of organic compounds can end up being classified
erroneously as soot.

Here we present the use of ClusterSculptor to refine the clus-
tering of three particle types that were classified into a single

Fig. 2. (a) A color map of 3000 NaCl and 3000 NaNO3 particles. (b) The same color
map but sorted according to the intensity of the peak at m/z = 62. (c) The average
mass spectrum of the sculpted data (top). The color map indicating the five clusters
the data were classified into and the resulting dendrogram (right). The particle vac-
uum aerodynamic sizes (left green panel). (d) The final two clusters produced by
recombining the five clusters in (c). Here the data are sorted by particle size.
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Fig. 3. (a) A color map of 5547 individual particle mass spectra of particles composed of pyrene, lauric acid and fresh diesel soot. (b) The same data as in (a), but sorted by
the intensity of the peak at m/z = 27.

Fig. 4. A color map of the mass spectra of 5547 particles separated into three clusters and marked according to their composition. The data were sorted according to the
particle vacuum aerodynamic sizes, which are shown in the left panel. The arrows mark discontinuities in the particle size distributions that indicate misclassified mass
spectra.
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branching point of the original SpectraMiner hierarchical tree [9].
The branching point was identifiable by soot-like progression. This
dataset includes 5547 individual particle mass spectra: 2915 spec-
tra of freshly emitted soot particles sampled directly from diesel
exhaust; 1451 spectra of particles composed of pyrene, which is
a polyaromatic hydrocarbon; and 1181 lauric acid particles, a 10-
carbon organic molecule.

Fig. 3a shows the color map of all 5547 individual particle mass
spectra and the average mass spectrum of all these particles, which
is clearly dominated by the progression of carbon peaks at m/z = 12,
24, 36 common to soot particles. A careful inspection of the color
map reveals the presence of other, much weaker peaks, which
are consistent with organic compounds. A second indication that
organics are present in addition to soot is provided by the relative
intensities of the three carbon peaks. Our experience has shown
that in the mass spectra of soot particles, the relative intensities
steadily decrease when proceeding from C1

+ to C2
+ and then to C3

+.
In contrast, Fig. 3a shows that the intensity of the C3

+ mass spectral

Fig. 5. (a) A color map of 6352 individual particle mass spectra of particles composed of a
acid. (b) The sculpted data showing the newly created peaks at m/z = 4 and 6 and the 3 clu
Mass Spectrometry 275 (2008) 1–10 7

peak is higher than that of C2
+, suggesting that organic molecules

are present. The same data are shown in Fig. 3b except that here the
data have been sorted by the intensity of the peak at m/z = 27, which
is commonly observed in the mass spectra of organic particles, but
is not present in soot. In this view of the data, two types of organic
particles become apparent, one exhibiting a short progression that
is marked by magenta arrows and a second, longer progression that
is indicated with white arrows.

Our experience with mass spectra of organic compounds gen-
erated by laser ablation shows that, in addition to a high degree
of fragmentation, they often exhibit significant particle-to-particle
variations in mass spectral peak intensities. This clearly presents
significant obstacles to simple classification. In coarse classifica-
tion, the lower intensity peaks play a minor role and many of
the organics are classified together with soot. Under finer clas-
sification, with more stringent requirements on mass spectral
similarity, particle-to-particle fluctuations result in a large num-
ber of clusters, making data analysis more difficult. Our experience

mmonium nitrate, ammonium nitrate/lauric acid and ammonium sulfate/succinic
sters that the data were classified into.
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ticle. T

The mass spectra of nitrate particles characteristically have very
Fig. 6. A color map of 1552 individual mass spectra of pyrene par

shows that in many cases, when progressions of related mass
spectral peaks can be identified, it is possible to significantly
reduce the particle-to-particle fluctuations by summing the related

peaks.

In the present case we sum all the intensities of the peaks
that are marked by the white arrows and create a new peak at
m/z = 4. Similarly, we sum the intensities of the peaks marked by
the magenta arrows and place that sum in the m/z = 6 position. We
then assign a weight of 5 to these two new peaks to enhance their
impact on the data classification. Once sculpted, the data are first
classified into eight clusters, which are subsequently recombined
to produce the three clusters shown in Fig. 4, where the individ-
ual particles are sorted by their vacuum aerodynamic diameters
that are shown on the left. An examination of the size distribution
in Fig. 4 reveals discontinuities we indicated with arrows. These
discontinuities signify the presence of a small fraction of parti-
cles that remain misclassified. Since the fractal nature of fresh soot
results in particles with vacuum aerodynamic size distribution that
is relatively narrow, peaks at 100 nm and is independent of their
physical diameters, we can rely on this property to complete the
classification process by transferring these particle into the soot
class.

Fig. 7. A color map of 1852 mass spectra of lauric acid particles
he data were originally classified into the five indicated clusters.

3.3. Ammonium nitrate and ammonium nitrate with organics
intense NO+ signals. When organics are added to nitrate particles,
the mass spectra of these internally mixed particles are still dom-
inated by the NO+ peak and the organics are almost invisible and
hence difficult to properly identify. Here we present the analysis of
6352 individual particle mass spectra with a number of different
compositions: 2999 pure ammonium nitrate (AN) particles, 2665
internally mixed AN/lauric acid (AN/LA) particles with 1:1 weight
fraction ratio, and 688 ammonium sulfate particles mixed with suc-
cinic acid (AS/SA) at a number of different weight fraction ratios.
Since the mass spectra of all of these particles are dominated by
an intense NO+ peak, they were originally classified together into
the same branching point of the SpectraMiner dendrogram [9]. It is
common for us to find that approximately 10% of the ammonium
sulfate particles are classified together with AN particles. In the
present case, the 688 AS/SA particles, which were included in the
same branching point, represent less than 5% of AS/SA particles in
the overall study.

Fig. 5a is a color map of the 6352 individual particle mass spec-
tra. It reveals the fact that the mass spectra of all the particles in

. The data were originally classified into the 14 clusters.
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Fig. 8. A bar graph representation of results of two clustering approaches: unsuper-
vised data classification (left) and expert-steered classification (right).

this class are clearly dominated by the NO+ mass spectral peak
at m/z = 30. The existence of organics in some of these particles is
indicated by presence of several other peaks, even though no clear
intensity patterns are observed that could be used for particle iden-
tification. To enhance the differences between particles containing
organics and those that do not, we created a new peak at m/z = 4,
which is the sum of all peak intensities except peaks at m/z = 30, 18
and 28. To help identify the internally mixed AS/SA particles, we
created a second peak at m/z = 6, which is the sum of the two peaks

at m/z = 18 and 28. Finally, a weight of 10 was applied to the newly
created peaks, after which the data were classified and sequentially
recombined to yield the three clusters shown in Fig. 5b. An exam-
ination of the classification results shows that ∼90% of the AN/LA
and AN particles were properly classified into the 1st and 2nd clus-
ters, respectively, and that 60% of the mixed AS/SA particles were
classified into the 3rd cluster, while the rest were classified into the
1st.

3.4. Fragmentation patterns of organic molecules and data
clustering

So far, we have demonstrated the application of ClusterSculptor
to cases where the original classification did not properly separate
different particle types. In this section we address the opposite
state, in which data clustering produces a number of clusters all
populated by identical particle type. Since organic molecules often
exhibit a wide range of fragmentation patterns, this problem is most
commonly encountered during the classification of organic parti-
cles. To deal with this issue, we have already built into SpectraMiner
Mass Spectrometry 275 (2008) 1–10 9

the option to explore the data at all the hierarchal branches and
even collapse the hierarchical tree at any branching point. However,
SpectraMiner does not provide the means to conveniently visual-
ize and inspect thousands of mass spectra and combine or separate
different branches on different levels of the hierarchical tree.

To demonstrate this, we will use the example of two very differ-
ent organic particle types composed of lauric acid and pyrene, both
of which were previously encountered when re-clustering the node
containing soot particles. In this section we examine the individual
mass spectra of these particle types that were not classified with
soot particles. Fig. 6 shows the color map of 1552 mass spectra of
pyrene particles, which like most other polyaromatic hydrocarbons
produce relatively simple and easy to identify fragmentation pat-
terns. The five clusters that are shown in Fig. 6 were produced by
the original data classification in SpectraMiner. A close examination
of the color map of these mass spectra and the 3D Eigen map (not
shown) strongly suggests that they all represent the same organic
compound and should be combined together.

Fig. 7 provides a similar example of 1851 single particle mass
spectra of particles that are composed of lauric acid. Again, the clus-
ters represent the results of the previous classification in which the
data were subdivided into 14 clusters. The extensive fragmentation
pattern that is clearly visible in Fig. 7 is common to laser ablation
generated mass spectra of long chain organics, like lauric acid. A
high degree of particle-to-particle variability in the mass spectral
relative peak intensities results in the large number of clusters that
are indicated in the figure. Fig. 7 shows a simple trend of increasing
degree of fragmentation as we move from top to bottom. As pre-
viously noted this trend does not end in this figure but continues
to the point where some of the lauric acid particles are classified
together with soot particles. ClusterSculptor is used here to com-
bine all of these clusters and reduce the complexity of the data
analysis.

4. Conclusions

We presented the results of an application of ClusterSculptor to
the classification of individual particle mass spectra of laboratory
generated particles of different types. We showed that unsuper-
vised data clustering produces results that an expert can easily
recognize as lacking. We demonstrated that the vast amount of sci-
entific knowledge accumulated in the field of single particle mass
spectrometry could, and should be used to steer the process of data

clustering. To this end, we have developed new software called
ClusterSculptor that provides the user interactive and intuitive tools
to visualize and sculpt the data in a way that would guide data
clustering process to yield the proper results.

We applied this software to address the problems previously
identified by SpectraMiner – our dedicated data visualization and
mining software package. Our goal was to put ClusterSculptor to
the test and to gauge its performance in identifying and separating
different particle types that were wrongly classified together and
combining particles of the same particle type that were clustered
into many smaller classes. Our ultimate goal is to produce an inter-
active visual display of the data in its simplest possible form, but
with minimum loss of information. In Fig. 8 we provide bar graphs
illustration what has been accomplished by applying ClusterSculp-
tor to the data. On the left we indicate the state of classification
results prior to the application of ClusterSculptor and on the right
we present the end results of this study. We have been able to dras-
tically reduce the number of clusters that represent the 8 particle
types used in this study and most importantly, we have shown
that, with the exception of the AS/SA particles, the new clusters
are nearly pure.
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